717. The Structures of Niobium and Tantalum Pentafluorides.

By A. J. Edwards.

The pentafluorides of niobium and tantalum have been shown, by X-ray single-crystal techniques, to have a tetrameric structural unit in the solid. The metal atoms are at the corners of a square, linked by linear bridging fluorine atoms. The two compounds are isostructural with molybdenum pentafluoride. In each, the metal-fluorine bridging bond length is $2 \cdot 06 \AA$ and the metal-fluorine non-bridging bond length $1.77 \AA$.
Niobium and tantalum pentafluorides have been known for many years, they were prepared and fully characterised by Ruff and Schiller ${ }^{1}$ in 1911. These workers also measured the vapour pressures and densities of the two compounds, as well as investigating many of their chemical reactions. More recently, Fairbrother and his co-workers ${ }^{2}$ have accurately established the melting and boiling points of the pentafluorides, from vapourpressure measurements, and have also studied the electrical conductivities of the molten compounds.

The properties of the two pentafluorides are very similar. Both are white crystalline solids, m. p. 80°, b. p. 235°, for niobium pentafluoride, and m. p. 95°, b. p. 229° for tantalum pentafluoride; these values are near those of other transition-metal pentafluorides. ${ }^{3}$ The compounds can be handled and stored in Pyrex glass under rigorously dry conditions.

Crystals were set up in Pyrex glass capillaries for the structure determination, as described below.

Experimental

The two pentafluorides were prepared by direct fluorination of the powdered metals. Purification was achieved by slow sublimation under high vacuum; this treatment removed any traces of hydrogen fluoride, and the purified samples did not attack glass, even after several months at room temperature.

Preparation of Single Crystals.-Both compounds are immediately hydrolysed by moist air and it was necessary to seal the crystals in Pyrex capillaries under vacuum. Samples were sublimed and powdered with nickel balls under high vacuum. Small amounts of the powder were shaken into long capillaries, and these were then sealed from the rest of the apparatus. The capillaries were kept at $60-70^{\circ}$ for several days, and well-formed crystals grew on the tube walls. Single crystals were sealed in small sections of capillary by means of a micro flame. This technique was superior to the methods used for molybdenum ${ }^{4}$ and ruthenium ${ }^{5}$ pentafluorides, as the crystals adhered firmly to the glass. Crystals were set about crystallographic axes by the usual methods. Preliminary powder photographs had established that the unit cells of the two compounds were similar to that of molybdenum pentafluoride, and the correct axes were easily identified.

Crystal Values.- $\mathrm{NbF}_{5}, \quad M=187.9$ monoclinic, $a=9.62 \pm 0.01, \quad b=14.43 \pm 0.02$, $c=5 \cdot 12 \pm 0.01 \AA, \beta=96 \cdot 1 \pm 0.3^{\circ}, V=706 \AA^{3}, D_{\mathrm{m}}=3 \cdot 29,{ }^{1} Z=8, D_{\mathrm{c}}=3.54, F(000)=688$. Space group $C 2 / m$ ($C^{3 h}{ }_{2}$, No. 12). Cu- K_{α} radiation, single crystal oscillation and Weissenberg photographs.
$\mathrm{TaF}_{5}, \quad M=275.9$, monoclinic, $a=9.64 \pm 0.01, b=14.45 \pm 0.02, c=5.12 \pm 0.01 \AA$, $\beta=96.3 \pm 0.3^{\circ}, V=706 \AA^{3}, D_{\mathrm{m}}=4 \cdot 98,{ }^{1} Z=8, D_{\mathrm{c}}=5 \cdot 19, F(000)=944$. Space group $C 2 / m\left(C^{3 /}{ }_{2}\right.$, No. 12). Cu- K_{α} radiation, single-crystal oscillation and Weissenberg photographs.

For both compounds reflections with $h+k \neq 2 n$ were systematically absent, characteristic of space groups $C 2, C m$, and $C 2 / m$. The space group $C 2 / m$ was confirmed by the success of the analysis. The linear absorption coefficients with $\mathrm{Cu}-K_{\alpha}$ radiation are $299 \mathrm{~cm} .^{-1}$ for niobium pentafluoride and $590 \mathrm{~cm} .^{-1}$ for tantalum pentafluoride.
${ }^{1}$ Ruff and Schiller, Z. anorg. Chem., 1911, 72, 329.
${ }^{2}$ Fairbrother and Frith, J., 1951, 3051; Fairbrother, Frith, and Woolf, J. 1954, 1031.
${ }^{3}$ Cady and Hargreaves, $J ., 1961,1568$.
4 Edwards, Peacock, and Small, J., 1962, 4486.
${ }^{5}$ Holloway, Peacock, and Small, $J ., 1964,644$.

Structure Determination.-Intensity values were collected for the three principal zones for niobium pentafluoride, and for the $h k 0$ and $h 0 l$ zones for tantalum pentafluoride. The usual multiple-film technique was applied, and relative intensities estimated by visual comparison with a standard scale. Values of F^{2} were obtained by correction for Lorentz and polarization factors. The spots were small, but not as difficult to estimate as those obtained from molybdenum pentafluoride, ${ }^{4}$ since the background intensity was much lower. This also allowed more spots of lower intensity to be observed. 153 of a possible 196 reflections were observed for niobium pentafluoride and 125 of a possible 155 for tantalum pentafluoride.

Inspection of the intensities showed that the structures of the two compounds were very similar to that of molybdenum pentafluoride. Structure factors were calculated for niobium pentafluoride by using the co-ordinates found for molybdenum pentafluoride. The scattering factors of Thomas and Umeda ${ }^{6}$ were used for niobium, and those of Berghuis et al. ${ }^{7}$ for fluorine; values were taken for the un-ionized atoms. ${ }^{8}$

The atomic co-ordinates and temperature factors were refined by the least-squares procedure. The final R values for the zones were: $h k 0, \mathbf{9 . 2} ; h 0 l, 11 \cdot 9 ; 0 k l, 9 \cdot 8 \%$ (for observed reflections only). The isotropic temperature factors were $B_{\mathrm{Nb}}=1.8 \AA^{2}$ and $B_{\mathrm{F}}=3.8 \AA^{2}$.

Structure factors were calculated for tantalum pentafluoride by using the parameters found for the niobium compound. Thomas and Umeda's ${ }^{6}$ scattering factors were used for tantalum, and a correction was made for dispersion. ${ }^{9}$ Application of an absorption correction, for a cylindrical specimen with $\mu_{\mathrm{r}}=3 \cdot 5,{ }^{10}$ to the observed intensities gave R values: $h k 0,11 \cdot 4$; $h 0 l, 11.8 \%$ (for observed reflections only). Since the crystals used were of irregular shape, this agreement was considered satisfactory for the absorption errors involved. The interatomic distances were taken to be the same as in niobium pentafluoride, for the cell dimensions are the same within experimental error.

Results.-In niobium and tantalum pentafluorides the atoms occupy the following positions of space group $C 2 / m^{11}$ (all with C face-centring).

$$
\begin{aligned}
& 4 \mathrm{M} \text { in }(g) \text { at } O, y, O ; O, \tilde{y}, O \\
& 4 \mathrm{M} \text { in (i) at } x, O, z ; \bar{x}, O, \bar{z} \\
& 2 \text { sets of } 4 \mathrm{~F} \text { in }(i) \text { at } x, O, z ; \bar{x}, O, \bar{z} \\
& 4 \text { sets of } 8 \mathrm{~F} \text { in }(j) \text { at } x, y, z ; \bar{x}, \bar{y}, z ; \bar{x}, y, \bar{z} ; \bar{x}, \bar{y}, \bar{z} .
\end{aligned}
$$

The estimated standard deviations were calculated by Cruikshank's method ${ }^{12}$ for niobium pentafluoride. Final atomic parameters with their estimated standard deviation (σ) are given

Fig. 1. The tetrameric unit of niobium pentafluoride or tantalum pentafluoride.

in Table 1. Interatomic distances are given in Table 2 for niobium pentafluoride and are the same for tantalum pentafluoride (for which no errors were calculated). Table 3 shows observed and calculated structure factors, and the tetrameric arrangement is illustrated in Fig. 1.

6 Thomas and Umeda, J. Chem. Phys., 1957, 28, 293.
7 Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
${ }^{8}$ Gutmann and Jack, Acta Cryst., 1951, 4, 244.

- "International Tables for X-ray Crystallography," Kynoch Press, Birmingham, Vol. III, p. 213.
${ }^{10}$ Ref. 9, Vol. II, p. 295.
${ }_{11}$ Ref. 9, Vol. I, p. 99.
${ }^{12}$ Cruikshank, Acta Cryst., 1949, 2, 65.

Table 1.

Table 2. Interatomic distances.

Bond	Length (\AA)
$\mathrm{Nb}(1)-\mathrm{Nb}\left(1^{\prime}\right)$	5.80 ± 0.006
$\mathrm{Nb}(2)-\mathrm{Nb}\left(2^{\prime}\right)$	5.90 ± 0.006
$\mathrm{Nb}(1)-\mathrm{F}(4)$	2.06 ± 0.02
$\mathrm{Nb}(2)-\mathrm{F}(4)$	2.07 ± 0.02
$\mathrm{Nb}(1)-\mathrm{F}(6)$	1.75 ± 0.02
$\mathrm{Nb}(1)-\mathrm{F}(5)$	1.78 ± 0.05
$\mathrm{Nb}(2)-\mathrm{F}(3)$	1.78 ± 0.02
$\mathrm{Nb}(2)-\mathrm{F}(1)$	1.75 ± 0.05

(1) Intramolecular

Bond	Length
$\mathrm{F}(1)-\mathrm{F}(4)$	$\mathbf{3 . 2 7} \pm 0.05$
$\mathrm{~F}(1)-\mathrm{F}\left(4^{\prime}\right)$	3.27 ± 0.05
$\mathrm{~F}(1)-\mathrm{F}(5)$	$2 \cdot 78 \pm 0.07$
$\mathrm{~F}(1)-\mathrm{F}(1)$	2.95 ± 0.07
$\mathrm{~F}(1)-\mathrm{F}(2)$	2.94 ± 0.07
$\mathrm{~F}(2)-\mathrm{F}(3)$	3.14 ± 0.05
$\mathrm{~F}(2)-\mathrm{F}\left(3^{\prime}\right)$	3.36 ± 0.05
$\mathrm{~F}(2)-\mathrm{F}(6)$	3.18 ± 0.05

\quad Bond	Length (\AA)
$\mathrm{Nb}(2)-\mathrm{F}(2)$	$1 \cdot 78 \pm 0.05$
$\mathrm{~F}(4)-\mathrm{F}\left(4^{\prime}\right)$	$2 \cdot 87 \pm 0.03$
$\mathrm{~F}(4)-\mathrm{F}\left(4^{\prime \prime}\right)$	$2 \cdot 83 \pm 0.03$
$\mathrm{~F}(3)-\mathrm{F}\left(3^{\prime}\right)$	$2 \cdot 66 \pm 0.03$
$\mathrm{~F}(6)-\mathrm{F}\left(6^{\prime}\right)$	2.75 ± 0.03
$\mathrm{~F}(4)-\mathrm{F}(6)$	2.66 ± 0.03
$\mathrm{~F}(4)-\mathrm{F}(3)$	2.70 ± 0.03
$\mathrm{~F}(4)-\mathrm{F}(1)$	2.61 ± 0.05

\quad Bond	Length (\AA)
$\mathrm{F}(4)-\mathrm{F}(2)$	$\mathbf{2 . 6 5} \pm 0.05$
$\mathrm{~F}(4)-\mathrm{F}(5)$	$\mathbf{2 . 6 3} \pm 0.05$
$\mathrm{~F}\left(\mathbf{4}^{\prime}\right)-\mathrm{F}(5)$	$\mathbf{2 . 5 4} \pm 0.05$
$\mathrm{~F}(6)-\mathrm{F}(5)$	$\mathbf{2 . 6 2} \pm 0.05$
$\mathrm{~F}\left(6^{\prime}\right)-\mathrm{F}(5)$	2.66 ± 0.05
$\mathrm{~F}(3)-\mathrm{F}(1)$	2.67 ± 0.05
$\mathrm{~F}(3)-\mathrm{F}(2)$	$\mathbf{2 . 6 2} \pm 0.05$

(2) Intermolecular

Bond	Length
$\mathrm{F}(3)-\mathrm{F}(6)$	3.22 ± 0.03
$\mathrm{~F}(3)-\mathrm{F}(3)$	$3 \cdot 12 \pm 0.03$
$\mathrm{~F}(4)-\mathrm{F}(5)$	$3 \cdot 16 \pm 0.05$
$\mathrm{~F}(4)-\mathrm{F}(6)$	$3 \cdot 18 \pm 0.03$
$\mathrm{~F}(5)-\mathrm{F}(3)$	3.09 ± 0.05
$\mathrm{~F}(5)-\mathrm{F}\left(3^{\prime}\right)$	$3 \cdot 17 \pm 0.05$
$\mathrm{~F}(5)-\mathrm{F}(6)$	$3 \cdot 24 \pm 0.05$
$\mathrm{~F}(5)-\mathrm{F}\left(6^{\prime}\right)$	2.89 ± 0.05

\quad Bond	Length
$\mathrm{F}(\mathbf{2})-\mathrm{F}(2)$	$\mathbf{3 . 1 4} \pm 0.07$
$\mathrm{~F}(3)-\mathrm{F}(6)$	$\mathbf{3 . 1 4} \pm 0.03$
$\mathrm{~F}(3)-\mathrm{F}\left(6^{\prime}\right)$	3.15 ± 0.03
$\mathrm{~F}(5)-\mathrm{F}(5)$	3.07 ± 0.07
$\mathrm{~F}(5)-\mathrm{F}\left(5^{\prime}\right)$	3.70 ± 0.07
$\mathrm{~F}(6)-\mathrm{F}(6)$	2.88 ± 0.003

$\mathrm{F}(4)-\mathrm{Nb}(1)-\mathrm{F}\left(4^{\prime}\right)$	$88 \cdot 3^{\circ} \pm 1^{\circ}$
$\mathrm{F}(6)-\mathrm{Nb}(1)-\mathrm{F}\left(6^{\prime}\right)$	$103 \cdot 6 \pm \mathbf{l}^{\circ} \cdot 5$
$\mathrm{~F}(5)-\mathrm{Nb}(1)-\mathrm{F}\left(5^{\prime}\right)$	$164 \pm \mathbf{2 \cdot 5}$
$\mathrm{F}(5)-\mathrm{Nb}(1)-\mathrm{F}(6)$	$95 \cdot 8 \pm 2$
$\mathrm{~F}(5)-\mathrm{Nb}(1)-\mathrm{F}\left(6^{\prime}\right)$	$97 \cdot 8 \pm 2$

$\mathrm{F}(1)-\mathrm{Nb}(2)-\mathrm{F}(2)$	$167^{\circ} \pm 2 \cdot 5^{\circ}$
$\mathrm{F}(1)-\mathrm{Nb}(2)-\mathrm{F}(3)$	$\mathbf{9 8 \cdot 3} \pm \mathbf{2}$
$\mathrm{F}(2)-\mathrm{Nb}(2)-\mathrm{F}(3)$	$\mathbf{9 4 \cdot 8} \pm \mathbf{2}$
$\mathrm{F}(1)-\mathrm{Nb}(2)-\mathrm{F}(4)$	$\mathbf{8 5 \cdot 5} \pm \mathbf{2}$
$\mathrm{F}(2)-\mathrm{Nb}(2)-\mathrm{F}(4)$	$\mathbf{8 6 \cdot 6} \pm \mathbf{2}$

Discussion

Niobium and tantalum pentafluorides have the molybdenum pentafluoride structure. ${ }^{4}$ Within experimental error, there are two metal-fluorine bond lengths: (a) $1.77 \AA$, the distance from the metal to a non-bridging fluorine atom, and $(b) 2.06 \AA$, the distance from the metal to the bridging fluorine atom. Each metal atom is co-ordinated by a distorted octahedron of fluorine atoms, the two environments being the same, within experimental error (Table 2).

The difference in the two bond lengths $(0.29 \AA)$, and the shape of the octahedron, are very similar to the dimeric niobium pentachloride, ${ }^{13}$ where the difference in bridging and terminal bond lengths is $0.26 \AA$, and the co-ordination octahedron is almost identical.

The structure can be regarded as a distorted cubic close-packing of fluorine atoms, with metal atoms occupying one-fifth of the octahedral holes. The close-packing can be seen in Fig. 2, showing the molecular arrangement along [010]. If the fluorine atoms are assumed to be exactly close-packed in the cell, the calculated fluorine-fluorine distance is $2.92 \AA$. The average distances found are $2.65 \AA$ for intramolecular and $3.14 \AA$ for intermolecular neighbours.

The structure of ruthenium pentafluoride ${ }^{5}$ is based on a hexagonal close-packed arrangement of fluorine atoms, with a tetramer linked by non-linear bridging fluorine atoms. The change in packing from cubic for niobium, tantalum, and molybdenum, to

[^0]Table 3.
Observed and calculated structure factors.
(1) Niobium Pentafluoride

(2) Tantalum Pentafluoride

$h k l$	$\left\|F_{0}\right\|$	F_{c}	$h k$		$\left\|F_{0}\right\|$	$F_{\text {c }}$
001	264	264	40	4	214	263
2	<28	5		5	68	60
3	129	189		6	<14	6
4	141	207				
5	46	53	60	01	141	90
6	<16	$\overline{2}$		2	171	205
				3	120	118
201	205	204		4	<23	2
2	507	521		5	55	61
3	235	182				
4	<29	$\overline{2}$	$\overline{6} 0$		240	209
5	92	85		2	375	365
6	125	121		3	97	69
				4	<27	6
201	283	285		5	101	119
2	205	195		6	102	95
3	103	84				
4	<27	13	80		165	204
5	121	131		2	<26	9
6	152	138		3	41	41
				4	120	124
40	180	208				
	<28	0	$\overline{8} 0$		94	61
	140	127		2	<28	10
	228	220		3	152	155
	96	98		4	125	128
40	163	125	10, 0	01	49	43
	<28	6		2	153	138
	187	195		3	90	92

$$
\begin{aligned}
& \begin{array}{rrrr}
h k l & \left|F_{0}\right| & F_{\mathrm{c}} \\
810 & 0 & 166 & 149 \\
12 & <17 & 5 \\
14 & 64 & 55 \\
91 & 0 & <27 & \overline{11} \\
3 & 93 & \overline{1} 22 \\
5 & 36 & 33 \\
7 & 78 & \overline{104} \\
9 & <20 & 16 \\
11 & <15 & 5 \\
10,0 & 0 & <24 & 10 \\
2 & 125 & 1 \frac{1}{3} 9 \\
4 & 28 & \frac{34}{3} \\
6 & 32 & \frac{3}{3} \\
8 & 119 & 97 \\
10 & <12 & 10
\end{array} \\
& \begin{array}{rrr}
11,10 & 38 & 53 \\
3 & 13 & 13 \\
5 & 89 & 89 \\
7 & 20 & \frac{89}{14}
\end{array} \\
& \begin{array}{rrr}
12,0 & 0 & 73 \\
2 & <11 & 0 \\
4 & 40 & 50
\end{array}
\end{aligned}
$$

hexagonal for ruthenium and osmium (see ref. 5), is paralleled by the trifluoride structures ${ }^{\mathbf{1 4}}$ and appears to be connected with the element itself, regardless of its valency state.

The pentafluorides of chromium, technetium, and rhenium have recently been shown to have orthorhombic unit cells ${ }^{15}$ and a third structure modification seems probable for these elements.

[^1]

Fig. 2. Projection of the structure along [010] showing the approximate close-packing. Full lines mark the tetramer at $y=0$, broken lines the tetramer at $y=\frac{1}{2}$; the unit cell is shown dotted.

I am indebted to Dr. R. D. Peacock and to Dr. R. W. H. Small for advice and encouragement, to the Royal Society for provision of X-ray equipment, to Imperial Chemical Industries Limited for the loan of a fluorine cell, and to the D.S.I.R. for a Research Fellowship.

[^0]: ${ }^{13}$ Zalkin and Sands, Acta Cryst., 1958, 11, 615.

[^1]: 14 Hepworth, Jack, Peacock, and Westland, Acta Cryst., 1957, 10, 63.
 15 Edwards, Proc. Chem. Soc., 1963, 205.

